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Whether strange nonchaotic attractors �SNAs� can typically arise in non-skew-product maps has been a
crucial question for more than two decades. Recently, it was shown that SNAs arise in a particular non-skew-
product map related to quasiperiodically driven continuous dynamical systems �R. Badard, Chaos, Solitons
Fractals 28, 1327 �2006�; Chaos 18, 023127 �2008��. In the present paper, we derive Badard’s non-skew-
product map from a periodically driven continuous dynamical system with spatially quasiperiodic potential and
investigate onset mechanisms of SNAs in the map. In particular, we focus on a transition route to intermittent
SNAs, where SNAs appear after pair annihilations of stable and unstable fixed points located on a ring-shaped
invariant curve. Then the mean residence time and rotation numbers have a logarithmic singularity. Finally, we
discuss the existence of SNAs in a special class of non-skew-product maps.
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I. INTRODUCTION

Strange nonchaotic attractors �SNAs� are nontrivial attrac-
tors lying between quasiperiodicity and chaos. The concept
of SNAs was introduced by Grebogi et al. �1�, and since then
SNAs have been investigated theoretically �1–25� as well as
experimentally �25–28� �for recent reviews, see �29,30��. Ac-
cording to the definition by Grebogi et al. �1�, here the term
“strange attractor” means a piecewise nondifferentiable at-
tractor which is neither a finite set of points, a closed curve,
a piecewise smooth surface, nor a volume bounded by a
piecewise smooth closed surface. The term “nonchaotic�
means that the maximum Lyapunov exponent is nonpositive;
that is, there is no exponential sensitivity to initial condi-
tions.

SNAs appear to be typical in quasiperiodically driven dy-
namical systems �1,2� as well as in quantum systems with a
spatially quasiperiodic potential �3,4�. That is, SNAs exist
over sets of positive measure in parameter space in these
systems �31�. In general, a quasiperiodically driven continu-
ous dynamical system is transformed into a map of skew-
product type �32�,

xn+1 = g�xn,�n� ,

�n+1 = �n + � �mod 1� , �1�

where the function g�x ,�� is periodic in �, and � is irratio-
nal. However, the same continuous system can be trans-
formed into a map without skew-product structure.

As discussed in previous papers �6� the following ques-
tions are not yet clear: �Q1� Are there any periodically forced
or autonomous systems which typically exhibit SNAs? �Q2�
Are there any non-skew-product maps which typically ex-
hibit SNAs? �Q3� If SNAs arise in any non-skew-product
maps, what kinds of new phenomena can be observed? Gre-
bogi et al. noted that SNAs are not robust against small
perturbations which destroy the skew-product structure �1�.
Wang et al. showed that SNAs are induced in non-skew-

product maps by the addition of noise �8�, but these systems
can be considered as skew-product if the dynamics of the
noise is included as a part of system definition.

Recently, Badard showed that some quasiperiodically
driven continuous systems can be transformed both into
skew-product maps and into non-skew-product maps by con-
sidering different Poincaré sections and gave a positive an-
swer to question �Q2� by presenting a non-skew-product map
which generates SNAs �9,10�. In the present paper, we will
explore Badard’s non-skew-product map obtained from a dif-
ferent physical origin and show a type of intermittency route
to SNAs. Several types of intermittency routes to SNAs are
known to exist, where smooth tori collapse and transform
into intermittent SNAs �16–25�. On the other hand, in Ba-
dard’s map, the transition to intermittent SNAs can occur
after pair annihilations of stable and unstable fixed points
located on a ring-shaped invariant curve. Our results not only
support Badard’s answer to question �Q2� but also give an
answer to question �Q3� although question �Q1� is still open.

This paper is organized as follows. In Sec. II, we give a
short review of Badard’s map and explicitly derive the same
map from a physical toy model. Then we can remove two
assumptions on invertibility and on absence of fixed point
from Badard’s construction �9�. The removal of the latter
assumption is a key to the type of intermittency transition to
SNAs. In Sec. III, a characterization method for SNAs is
explained. In Sec. IV, we present numerical results to show
the existence of SNAs in the map and demonstrate the inter-
mittency transition to SNAs. A summary and discussion are
provided in Sec. V.

II. MODEL

A. Brief review of Badard’s map

In the beginning, we briefly review Badard’s map in
�9,10�. Consider the quasiperiodically driven oscillator de-
fined by the following differential equation on R3:

ẋ = 1 + aF�x,y,z� ,

ẏ = � ,*takahito321@ruri.waseda.jp
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ż = � , �2�

where F is Lipchitz and periodic in x, y, and z with period 1,
and � /� is irrational. Suppose �F��1 and �a��1 so that x is
always increasing. This system can be defined on the 3-torus
by taking modulo 1 for x, y, and z.

To analyze such a flow system we commonly construct
stroboscopic maps by the Poincaré section method. It is
usual to discretize Eq. �2� in either period of drivings. Then
we obtain a map of skew-product type in Eq. �1�. Another
discretization way is to consider the instants tn at which the
variable x takes integer values, x�tn��Z. The time �tn+1− tn�
necessary for x to increase by 1 is defined by a single func-
tion ��yn ,zn�, where y�tn�=yn and z�tn�=zn. From linear evo-
lutions of y and z, we obtain a map of non-skew-product type
on R2,

yn+1 = yn + ���yn,zn� ,

zn+1 = zn + ���yn,zn� . �3�

Equation �3� can be defined on 2-torus T2 by taking modulo
1 for y and z. As proven in �9�, function ��y ,z� is continuous,
periodic in y and z, strictly positive and bounded, and map
�3� is a homeomorphism both on R2 and T2 �i.e., an invertible
map�. Furthermore, map �3� can neither have fixed points nor
cycles, and it has only a rotation vector independent of initial
conditions. Badard chose

��y,z� = K +
H

2��
sin�2�y� +

Q

2��
sin�2�z� �4�

for numerical experiments and showed that the non-skew-
product map exhibits SNAs �9,10�.

B. Derivation of Badard’s map

To derive Badard’s map in Eqs. �3� and �4� explicitly, we
consider the motion of two incommensurately coupled rota-
tors, R1 and R2, driven by periodic kicks �see Fig. 1�. Each
rotator has rotational angle 	i�R and radius ri �i=1,2�. The
rotaters are coupled by a stiff rope and rotate satisfying a
restraint 	2=k	1+
, where k=r1 /r2 is irrational, and 

�R is the value of 	2 at 	1=0. Each rotator accompanies a
point mass mi at a fixed position on the circumference, and
each mass is kicked by a gravitational force mig and a rota-
tive force Ti with a period of tp. In addition, each mass is
subjected to a damping force with coefficient �i. Then the
dimensionless equations of angles are

	̈1 = − �	̇1 + �T − sin 	1 − a sin�k	1 + 
���
n


�t − �n� ,

	2 = k	1 + 
 , �5�

or equivalently

	̈1 = − �	̇1 + �T − sin 	1 − a sin 	2��
n


�t − �n� ,

	̈2 = − �	̇2 + k�T − sin 	1 − a sin 	2��
n


�t − �n� , �6�

with 	̇2�0�=k	̇1�0� and 	2�0�=k	1�0�+
, where time is
scaled by the characteristic time tc= ��1+m2 /m1�r1 /g�1/2, and
the other parameters are given by �= ��1+�2�r1tc

−1/2 /m1g,
T= �T1+T2� /m1g, a=m2 /m1, and �= tp / tc.

Integrating Eq. �5� over a period � from t=n�− to t
= �n+1��−, we obtain a map for the variables �vn ,	n�
ª lim→0(	̇1�n�−� ,	1�n�−�),

vn+1 = e−���vn + T − sin 	n − a sin�k	n + 
�� ,

	n+1 = 	n +
1 − e−��

�
�vn + T − sin 	n − a sin�k	n + 
�� .

�7�

This map has a Jacobian −e−�� and is invertible for finite �.
In the overdamped limit ��=tp / tc�→�, map �7� becomes
noninvertible due to a loss of memory about previous state,
and it is reduced to a one-dimensional map f :R→R for the
variable xn=−	n /2�,

xn+1 = xn + � +
V

2�
	sin 2�xn +

�

k
sin 2��kxn + ��
 ,

ª f�xn;�� , �8�

where V=1 /�, �=−T /2��, �=−
 /2�, and �=ka. This
map is invertible for V�Vc�ª1 / �1+��� and noninvertible
for V�Vc. Note that map f reduces to the well-known sine-
circle map for �=0. When we regard � as a system’s “vari-
able,” we deal with an extended map F :R2→R2 such that

�xn+1,�� = F�xn,�� ª „f�xn;��,�… .

In the same manner of integration, Eq. �6� yields a two-
dimensional map M :R2→R2 for the variable �yn ,zn�
ª lim→0(−	1�n�−� /2� ,−	2�n�−� /2�) in the over-
damped limit

M:�yn+1 = yn + � +
V

2�
	sin 2�yn +

�

k
sin 2�zn


zn+1 = zn + k�� +
V

2�
	sin 2�yn +

�

k
sin 2�zn
� .

Again we have a restraint for these variables,

zn = kyn + � . �9�

The maps F and M are topologically conjugate by the ho-
meomorphism h given by

FIG. 1. Incommensurately coupled kicked rotators. See text for
notation.
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�yn,zn� = h�xn,�� ª �xn,kxn + �� . �10�

Hence, the dynamics of map M can be explored by the rather

simple map F. Map M can be defined on T2. Denote by M̃
the map of T2 obtained by taking modulo 1 for y and z in M,

M̃:�
yn+1 = yn + � +

V

2�
	sin 2�yn +

�

k
sin 2�zn


�mod 1� ,

zn+1 = zn + k�� +
V

2�
	sin 2�yn +

�

k
sin 2�zn


�mod 1� .

� .

Then map M is called a lift of map M̃. Map M̃ corresponds
with Badard’s map, Eqs. �3� and �4�, with parameter changes.
However, we can reasonably consider noninvertible and

fixed points regimes in map M̃, unlike in Badard’s map.

In this paper, we are interested in attractors of map M̃,
especially in SNAs. We will recall other related maps f , F or
M when needed. In what follows, consider � and V as con-
trol parameters. We can set ��0 without loss of generality,
and V�0 by definition.

As with map f , map M̃ is also invertible for V�Vc and
noninvertible for V�Vc. In the invertible region V�Vc, the
rotation numbers of y and z with respect to lift M are defined
without dependence on initial conditions �9�:

Wy = lim
n→�

�yn − y0�/n, Wz = lim
n→�

�zn − z0�/n . �11�

From Eq. �9�, the rotation numbers satisfy Wz=kWy. In the
noninvertible region V�Vc, the rotation numbers may de-
pend on the initial conditions �10�.

For ���b�V��ª V
2� �1+ �

k ��, fixed points are the only pos-
sible attractors if V�Vc, and in contrast, some cycles or
chaotic attractors can coexist with fixed points if V�Vc. This
fixed points region ���b�V� cannot appear in Badard’s

construction. On the other hand, for ���b�V�, map M̃ has
neither fixed points nor any cycles as shown in �33�. Thus,

map M̃ should exhibit some quasiperiodic or aperiodic mo-
tion for ���b�V�.

III. CHARACTERIZATION METHOD

Firstly, we look at the Lyapunov spectrum of map M̃ and
show that one exponent is always zero, and that the other
exponent corresponds with the Lyapunov exponent of map f .

For map M̃, the Lyapunov exponent for an initial tangent
vector u0 is given by

lim
n→�

1

n
ln�DM̃n�y0,z0�u0� , �12�

where DM̃n�y0 ,z0� is the Jacobian matrix of the nth iterated

map �yn ,zn�=M̃n�y0 ,z0� given by

DM̃n�y0,z0� =�
�yn

�y0

�yn

�z0

�zn

�y0

�zn

�z0

� .

Using Eq. �10�, we can transform this matrix into

DM̃n�y0,z0� =�
�xn

�x0
− k

�xn

��

�xn

��

k	 �xn

�x0
− k

�xn

��

 − k k

�xn

��
+ 1� .

One can easily see that the Jacobian matrix DM̃n�y0 ,z0� has
an eigenvector �1,k� with eigenvalue

�xn

�x0
. Thus, the

Lyapunov exponent for u0= �1,k� is

lim
n→�

1

n
ln� �xn

�x0
� = lim

n→�

1

n�
j=0

n−1

ln�fx�xj;��� � � f , �13�

where � f is the Lyapunov exponent of map f . Equation �12�
can take at most two different values depending on the initial
tangent vector u0. We denote the other Lyapunov exponent

by �̄. Then these exponents � f and �̄ satisfy

� f + �̄ = lim
n→�

1

n
ln�det DM̃n�y0,z0�� .

Using det DM̃n�y0 ,z0�=�xn /�x0, we obtain � f + �̄=� f; that is,

Lyapunov exponent �̄ is always zero. Therefore, the attractor

of map M̃ is chaotic �or nonchaotic� if the Lyapunov expo-
nent � f is positive �or nonpositive�. Note that other maps M
and F have the same Lyapunov spectrum �� f ,0�.

Secondly, to discuss the strangeness of nonchaotic attrac-
tors with � f �0, let us look at the evolution of infinitesimal
perturbation 
un= �
yn ,
zn� of an orbit �yn ,zn�, which is gov-

erned by 
un=DM̃n�y0 ,z0�
u0. Orthogonal transformation
by the matrix U=1 /�k2+1� k −1

1 k � yields 
un�

=UDM̃n�y0 ,z0�U−1
u0�, where 
un�=U
un and

UDM̃n�y0 ,z0�U−1= � 1 0
k�xn/�x0−�k2+1��xn/��−k �xn/�x0

�. For the case
� f �0, the derivative ��xn /�x0��e�fn is exponentially small
for large n, and the perturbation for large n is approximated
by


un� � 
y0�� 1

− �k2 + 1�
�xn

��
− k � .

The phase derivative �xn /�� in the perturbation equation is
given by the recurrence relation

�xn+1

��
= fx�xn;��

�xn

��
+ f��xn;�� �14�

from Eq. �8�. For large n, unperturbed and perturbed orbits,
�yn� ,zn�� and �yn�+
yn� ,zn�+
zn��, converge to orbits on an at-
tractor, respectively, and the ratios 
zn� /
yn��−�k2

+1��xn /��−k given by the perturbation equation tend to the
derivatives of the attractor along a trajectory in the rotated
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coordinate �y� ,z��. That is, the strangeness of attractors can
be measured by the asymptotic behavior of �
zn� /
yn��. This
leads to the same criterion introduced by Pikovsky and Feu-
del �12�: if the phase derivative ��xn /��� is bounded for all n,
the attractor is smooth; on the other hand, if the phase de-
rivative ��xn /��� can be arbitrarily large along a trajectory
�i.e., unbounded�, the attractor cannot be smooth. Following
Pikovsky and Feudel �12�, we can evaluate the strangeness
of an attractor by the phase sensitivity function ��n�,

��n� = min
x0,�

� max
1�k�n

� �xk

��
� .

This quantity is known to behave as ��n��n����0� asymp-
totically for SNAs, where � is called the phase sensitivity

exponent �12,29�. Therefore, we can say that map M̃ has an
SNA for the case � f �0 and ��0. In this paper, we do not
consider the possibility of � f =0 and ��0 �i.e., critical
SNAs �5�� since the set of parameter values yielding such
exponents has Lebesgue measure zero in general.

IV. NUMERICAL RESULTS

In what follows, we set k= ��5−1� /2 and �=0.5, and nu-

merically study attractors of map M̃ focusing on bifurcation
phenomena in the invertible region V�Vc�=2 /3�. The phe-
nomena occurred in the noninvertible region will be reported
elsewhere �34�.

A. Phase diagram in Ω-V plane

Figure 2 shows the phase diagram for map M̃. Each phase
is characterized by the Lyapunov exponent � f and phase sen-
sitivity exponent �. In the region ���b�V� denoted by FP
and shown in black, only possible attractors are fixed points.
In contrast, several types of attractors with nonzero rotation
numbers appear for ���b�V�. Quasiperiodic attractors on
one or more smooth curves exist in the tonguelike regions
denoted by T1 and also shown in black. Hereafter, we call
such an attractor a “1-torus” �of single or multiband�. 1-torus
has � f �0 and �=0. Quasiperiodic attractors on the whole
2-torus exist in invertible regions between the T1-tongues,
which are denoted by T2 and shown in blue. Hereafter, we
call such an attractor a “2-torus.” 2-torus has � f =0 and �
=0. Chaotic attractors with � f �0 exist in the noninvertible
region denoted by Ch and shown in red. SNAs with � f �0
and ��0 exist in border regions of T1-tongues which are
denoted by SNA and shown in green. The numerical criteria
for 1-torus, 2-torus, SNA, and chaotic attractor are
� f �−10−5 and ��0.1, �� f��10−5, � f �−10−5 and ��0.1,
� f �10−5, respectively. The Lyapunov exponent � f is calcu-
lated for 2�106 iterations after discarding the initial 5
�103 transients, and the phase sensitivity exponent � is de-
termined from the growth rate of log ��n� between the time
interval �105 ,107�.

In regions FP and T1, the dynamics are mode locked; that
is, the rotation numbers satisfy

Wy =
m

n
+

l

n

1

k
and Wz =

m

n
k +

l

n
, �15�

where m, l, and n are integers. Multiplicities of a single
curve in 1-torus in the y-and z-directions have a ratio �m / l�,
but the triplet �m , l ,n� itself is not determined by the appar-
ent configuration of a 1-torus. Note that the regions FP and
T1 are contained in the mode-locking regions, so-called
Arnol’d tongues, but not all the mode-locking regions are FP
or T1, as some SNAs and chaotic attractors can also satisfy
the mode-locking condition �cf. �13,19��.

B. Nonsmooth saddle-node bifurcation route to SNAs

As reported in �9�, map M̃ exhibits transitions from a
1-torus to an SNA due to the nonsmooth saddle-node bifur-
cation of tori �13�. When the parameters cross the boundary
of T1-tongues, a 1-torus can transit to an SNA through a
collision with an unstable 1-torus. One of such transition
points is located near ��=0.294 067 34, V=0.666, which is
denoted by the cross �� � in Fig. 2. Figure 3�a� shows a
7-band 1-torus �fat dots� with � f =−0.004 863 and �=0, and
an unstable 7-band 1-torus �dots� for �=0.294 060, V
=0.666. Figure 3�b� shows an SNA with � f =−0.000 406 and
�=1.03 for �=0.294 067 4, V=0.666. The mode-locking
condition breaks through the nonsmooth saddle-node bifur-
cation. Indeed, the rotation number of y changes its value
from Wy = �−3+3 /k� /7�0.264 871 7 to Wy �0.264 879 0.

C. Intermittency route to SNAs

Besides the nonsmooth saddle-node bifurcation, another
type of transition to SNAs occurs in the invertible region

FIG. 2. �Color� Phase diagram in the �-V plane for map M̃.
Regions of fixed points �FP� and 1-torus �T1�, 2-torus �T2�, strange
nonchaotic attractor �SNA�, and chaotic attractor �Ch� are shown in
black, blue, green, and red, respectively. Solid line represents Vc

=2 /3 and divides the plane into invertible �below� and noninvert-
ible �above� regions. Cross �� � shows the nonsmooth saddle-node
bifurcation point near ��=0.294 067 34, V=0.666 discussed in the
text. When crossing the boundary of FP �given by �=�b�V�
ª

V
2� �1+ �

k ��, fixed points transit to an intermittent attractor: 2-torus
�route a�, SNA �route b�, or chaotic attractor.
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when the parameters cross the boundary �=�b�V� �see route
b in Fig. 2�. In region FP, fixed points exist on one or more
invariant curves given by sin�2�y�+ �

k sin�2�z�=− 2��
V in

phase space �see Fig. 4�a��. By the linear stability analysis
for the fixed points, one can proves that the phase space is
divided into contracting and expanding regions by critical
curves given by ��y ,z�ªcos�2�y�+� cos�2�z�=0. That is,
fixed points are stable for ��y ,z��0 and unstable for
��y ,z��0. For the case ��

V
2� �1− �

k �, the stable �solid line�
and unstable �dotted line� fixed points are separated by two

critical curves �dashed lines� as shown in Fig. 4�a�. In con-
trast, for the parameters near the boundary V

2� �1− �
k ���

��b�V�, some of the stable and unstable fixed points anni-
hilate each other on a critical curve, and the remaining fixed
points form a ring-shaped invariant curve, as shown in Fig.
4�b�. Upon further approaching the boundary, the ring-
shaped invariant curve shrinks, accompanied by successive
pair annihilations of stable and unstable fixed points, and
finally at �=�b�V�, the last pair of fixed points annihilates at
�y ,z�= �3 /4,3 /4�. As a result, several types of attractors such
as 2-torus, SNA and chaotic attractor appear depending on
the parameter values. Figure 4�c� shows a 2-torus with � f
=0 and �=0 for V=0.3, �=�b�0.3�+10−6, and figure 4�d�
shows an SNA with � f �−0.003 49 and ��0.97 for V
=0.666, �=�b�0.666�+10−6. To check that the 2-torus has
� f =0 actually, we examine the convergence of finite-time
Lyapunov exponent � f�n�ª 1

n� j=0
n−1ln�fx�xj ;���. For the

2-torus, � f�n� converges to zero as �� f�n���1 /n �see Fig.
5�a��. Different behaviors of phase sensitivity function ��n�
for the attractors are shown in Fig. 5�b�, where we can see a
distinct power-law divergence ��n��n0.97 for the SNA and a
saturation for the 2-torus.

There should be a question about whether SNAs arise in
the immediate vicinity of the boundary �=�b�V� because
there is also a dense set of T1 tongues. Figures 6�a� and 6�b�
show the Lyapunov exponent � f and phase sensitivity expo-
nent �, respectively, as a function of ��=�−�b�V� for V
=0.3 and V=0.666. For the case V=0.666, the phase sensi-

FIG. 3. Emergence of an SNA due to the nonsmooth saddle-
node bifurcation near ��=0.294 067 34, V=0.666: �a� Stable
7-band 1-torus �fat dots� and unstable 7-band 1-torus �dots� for �
=0.294 060, V=0.666; �b� SNA for �=0.294 067 4, V=0.666.
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dashed lines and expansion outside. �c� 2-torus for V=0.3, �
=�b�0.3�+10−6 just outside the boundary. �d� SNA for V=0.666,
�=�b�0.666�+10−6. Plus �+� in each figure represents the position
�y ,z�= �3 /4,3 /4� at which the last pair of stable and unstable fixed
points annihilates.
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FIG. 5. �a� Convergence of the finite-time Lyapunov exponent
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shows the absolute value �� f�n��. �b� Phase sensitivity functions
��n� for the same attractors in �a�.
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tivity exponent � maintains a value about 1.0�0.3 for small
��. This result indicates that a lot of SNAs exist in the
immediate vicinity of the boundary, with positive measure.
Therefore, we conclude that SNAs can arise due to pair an-
nihilation of fixed points.

After the transition, the dynamics show intermittency,
where intermissions occur near the “ruin” of fixed points �see
Figs. 4�c� and 4�d��. The orbits of �yn ,zn� in T2 are related to
those of xn in R by Eq. �10�. In the latter, intermissions occur
when xn traverses narrow channels between map f�x ;�� and
the bisector. Consider the case ���b�V� and V�Vc in
which the map f is always above the bisector and monotoni-
cally increasing. Then xn passes through all unit intervals
defined by Imª �m ,m+1� with m� �x0� in the time course,
where �x0� is the maximum integer less than x0. We define the
residence time Tm�x0 ,�� as the time interval during which the
trajectory xn stays in Im,

Tm�x0,�� ª min�n�xn � m + 1� − min�n�xn � m� . �16�

The residence times Tm�x0 ,�� depend on the initial condition
x0 and parameter �, but have an ergodic distribution function.
As derived in the Appendix, the maximum residence time
Tmaxªmaxm��x0� Tm�x0 ,�� is estimated to be Tmax��V�1
+k���� /��−1/2, and the mean residence time �T�

ª limM→��1 /M��m=�x0�
M Tm�x0 ,�� has a logarithmic singular-

ity to the parameter ��,

�T� � − c ln �� − c ln p , �17�

where c= 1
V
� k

� and p= ��V
k�1+k�� . Similarly, rotation numbers Wy

and Wz�=kWy� also have a logarithmic singularity to ��
since the rotation number of y is written as Wy =1 / �T�. Fig-
ure 7 shows a good correspondence between Eq. �17� and
numerical simulations. Just on the boundary �=�b�V�, rota-
tion numbers Wy and Wz are both zero �because �T�=��, but
they show anomalous convergence obeying a nested loga-
rithmic formula as reported in �35�.

The existence of intermittency leaves a trace in the phase
sensitivity function ��n� in Fig. 5�b�. At any time, xn is either
attracted to the nearest channel or repelled from it. In the
attracting regimes, the derivative fx�xn ;�� is smaller than 1,
and the phase sensitivity �xn /�� is reduced by Eq. �14�. Con-
trarily, in the repelling regimes, the derivative fx�xn ;�� is
greater than 1, and the phase sensitivity �xn /�� is expanded.
In the ensemble of trajectories, there can be the one which is
always attracted to a channel during half the period of the
maximum residence time �0,Tmax /2�. This trajectory would
give a small �almost minimal� phase sensitivity ��xn /��� until
n�Tmax /2. However, since attracting regimes cannot last
longer than Tmax /2, every trajectory with length n�Tmax /2
experiences repelling regimes in which the phase sensitivity
�xn /�� is expanded. This is why the phase sensitivity func-
tion ��n� increases suddenly near n�Tmax /2��103� for both
the 2-torus and SNA.

V. SUMMARY AND DISCUSSION

We have investigated Badard’s non-skew-product map de-
rived from a periodically driven dynamical system with spa-
tially quasiperiodic potential. The strangeness of attractors
has been characterized by the phase sensitivity exponent via
its topologically conjugate map. We present a type of inter-
mittency route to SNAs, where intermittent SNAs appear
after pair annihilations of stable and unstable fixed points
located on a ring-shaped invariant curve, and then the mean
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residence time and rotation numbers have a logarithmic sin-
gularity. We have verified this type of intermittent transition
to SNAs in other spatially quasiperiodic systems with con-
tinuous periodic forcing, for example, 	̈=−�	̇+T−sin 	
−a sin�k	+
�+A sin �t. In this paper, we have limited our
study to the phenomena observed in the invertible regime of

map M̃. In noninvertible regime, we encounter more various
bifurcations phenomena, for example, the torus fractalization
to SNAs �15� and the period-doubling route to chaos �34�.

Badard’s map can be treated in a somewhat general
framework. Consider a special class of non-skew-product
maps on T2,

yn+1 = yn + �y + F�yn,zn� ,

zn+1 = zn + �z + kF�yn,zn� , �18�

where F�y ,z� is a periodic function in y and z, and the pa-
rameters �y, �z and k are arbitrary real numbers. In a man-
ner explained in Sec. III, one can prove that there always
exists a Lyapunov exponent of zero for this class of maps.
By a homeomorphism �xn ,�n�= �yn ,zn−kyn�, this class of
maps is transformed into another class of skew-product maps
on a cylinder R1�T1,

xn+1 = xn + �y + F�xn,kxn + �n� ,

�n+1 = �n + � ,

where �=�z−k�y. Badard’s non-skew-product map corre-
sponds to the special case that k is irrational and �=0. If � is
irrational, we obtain quasiperiodically driven maps which
typically exhibit SNAs. If � is rational, we obtain periodi-
cally driven maps which may give rise to SNAs by choosing
some irrational k. Therefore, we conjecture that the class of
non-skew-product maps in Eq. �18� can exhibit SNAs for
suitable functions F.

APPENDIX: DERIVATION OF THE MAXIMUM
RESIDENCE TIME AND THE MEAN RESIDENCE TIME

In the situation that the parameter � be just greater than
�b�V��ª V

2� �1+ �
k ��, and V�Vc�ª1 / �1+���, map f�x ;�� in

Eq. �8� has no fixed point and is monotonically increasing,
but the orbit xn takes many iterations to traverse narrow
channels between the map function and the bisector. In these
channels, both sinus values in the map approach −1 simulta-
neously. Thus, channel regions must be at least near x

�3 /4+m �m�Z�. Taking a variable x̃=x− �3 /4+m� in each
unit interval Im= �m ,m+1�, local behavior near a narrow
channel is approximated by a differential equation

dx̃

dn
� � +

V

2�
�− cos 2�x̃ +

�

k
sin�k�x̃ + 3/4 + m� + �� ,

=� −
V

2�
�cos 2�x̃ +

�

k
cos 2��kx̃ + m� ,

where n is considered as a continuous variable, and the pa-
rameter sequence m is defined by

m ª �
�k�3/4 + m� + � − 3/4� �mod 1�
if �k�3/4 + m� + � − 3/4� �mod 1� � 1/2
�k�3/4 + m� + � − 3/4� �mod 1� − 1

if �k�3/4 + m� + � − 3/4� �mod 1� � 1/2
� .

This sequence m is considered as a uniform rotation on a
circle �−1 /2,1 /2� by an irrational k, and its terms m can be
infinitely small, that is, lim infm→��m�=0. For small x̃ and
m, the above differential equation is approximated by the
following quadratic form:

dx̃

dn
� �� +

V

2�
��1 + k��	x̃ +

�m

1 + k�

2

+
�m

2

k�1 + k�� ,

where ��ª�−�b�V�. In the case of large intermission, the
residence time Tm defined in Eq. �16� is dominated by the
time near a channel. Hence, Tm is obtained by integrating the
quadratic differential equation with respect to x̃ across x̃=
−�m / �1+k��,

Tm �
�

��V�1 + k���� + ���Vm�2/k
.

For m=0, we have the maximum residence time

Tm �� �

V�1 + k����
.

Since the sequence m has a uniform density P��=1 in
�−1 /2,1 /2� �index m is omitted�, the mean residence time is
obtained by the ensemble averaging with respect to ,

�T� � c�ln� + �2 + ��/p��=−1/2
=1/2

→ − c ln �� + c ln p−1��� → 0� ,

where c= 1
V
� k

� and p= ��V
k�1+k�� .
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